Impact of Solar and Interplanetary Disturbances on Space Weather

نویسندگان

  • S. K. Pandey
  • S. C. Dubey
چکیده

Solar activity is the dynamic energy source behind all solar phenomena driving space weather. During an active solar period, violent eruptions occur more often on the Sun. The solar flares (SFs) and coronal mass ejections (CMEs) shoot energetic and highly charged particles towards Earth that ensuing ionospheric and geomagnetic disturbances. The some geomagnetic disturbances illuminate night skies with brilliant sheets of red and green known as auroras or northern and southern lights. All these phenomena are most frequent near the maximum of each 11-year cycle of solar activity. The Maunder minimum (1645-1715) refers to a period when very few sunspots were observed. During this period, the Earth climate was cooler than normal. This period mimics the solar cycle climate change connections. The particles and electromagnetic radiations flowing from solar activity outbursts are important for long-term climate variations. The geomagnetosphere and upper atmosphere can be greatly perturbed by variations in the solar wind caused by disturbances on the Sun. In recent years, these in situ data have resulted in explosive growth in our knowledge and understanding of solar-interplanetaryterrestrial process. The magnetic reconnection provides opportunity to enter solar plasma within geomagnetosphere. Two kinds of flows dominate the large scale structure of solar wind: corotating flows and transient disturbances. Corotating flows are associated with spatial variability in coronal expansion and solar rotation, whereas transient disturbances are associated with episodic ejections of material into interplanetary space from coronal regions. There are two types of geomagnetic field variations termed as long-time variation and storm-time variations. The long-term variations are very useful to solar cyclical study of geomagnetic field variation as well as change in polarity of the Sun, climate change, plants growth rate and geological change of Earth’s pole. The storm-time variations deal the various characteristics of geomagnetic storms (GMSs) and their connection with solar source activities and interplanetary magnetic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Coronal Field and Solar Wind Components for MHD Interplanetary Simulations

The connection between solar activity and adverse phenomena in the Earth’s environment that can affect space and ground based technologies has spurred interest in Space Weather (SW) research. A great effort has been put on the development of suitable models that can provide advanced forecast of SW events. With the progress in computational technology, it is becoming possible to develop operatio...

متن کامل

Space Weather Studies Using Low-frequency Interplanetary Scintillation Observations

Plasma disturbances originating on the Sun, such as coronal mass ejections (CMEs), are a major factor in determining ‘space weather’ in the near-Earth environment. Virtually the only current source of routine observations of these disturbances as they propagate through the interplanetary medium are interplanetary scintillation (IPS) data. We review current work on time-dependent tomographic rec...

متن کامل

Tracking heliospheric disturbances by interplanetary scintillation

Coronal mass ejections are known as a solar cause of significant geospace disturbances, and a fuller elucidation of their physical properties and propagation dynamics is needed for space weather predictions. The scintillation of cosmic radio sources caused by turbulence in the solar wind (interplanetary scintillation; IPS) serves as an effective ground-based method for monitoring disturbances i...

متن کامل

Improvement of Two Operational Models for Advance Warning of Geoeffective Disturbances of Solar Origin

To improve and extend the predictive capabilities of two space weather models currently in operational use at the National Oceanic and Atmospheric Administration’s Space Environment Center (NOAA/SEC). The first, the Wang & Sheeley model (WS), predicts the background solar wind speed and interplanetary magnetic field (IMF) at Earth. The WS model is being improved though the incorporation of addi...

متن کامل

Solar cycle changes in coronal holes and space weather cycles

[1] Potential field source surface models of the coronal magnetic field, based on Mt. Wilson Observatory synoptic magnetograms, are used to infer the coronal hole sources of low-heliolatitude solar wind over approximately the last three solar cycles. Related key parameters like interplanetary magnetic field and bulk velocity are also calculated. The results illustrate how the evolving contribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017